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Abstract

Background

Photolyases and cryptochromes are evolutionarily related flavoproteins, which however

perform distinct physiological functions. Photolyases (PHR) are evolutionarily ancient

enzymes. They are activated by light and repair DNA damage caused by UV radiation.

Although cryptochromes share structural similarity with DNA photolyases, they lack DNA

repair activity. Cryptochrome (CRY) is one of the key elements of the circadian system in

animals. In plants, CRY acts as a blue light receptor to entrain circadian rhythms, and medi-

ates a variety of light responses, such as the regulation of flowering and seedling growth.

Results

We performed a comprehensive evolutionary analysis of the CRY/PHR superfamily. The

superfamily consists of 7 major subfamilies: CPD class I and CPD class II photolyases, (6–

4) photolyases, CRY-DASH, plant PHR2, plant CRY and animal CRY. Although the whole

superfamily evolved primarily under strong purifying selection (averageω = 0.0168), some

subfamilies did experience strong episodic positive selection during their evolution. Photo-

lyases were lost in higher animals that suggests natural selection apparently became

weaker in the late stage of evolutionary history. The evolutionary time estimates suggested

that plant and animal CRYs evolved in the Neoproterozoic Era (~1000–541 Mya), which

might be a result of adaptation to the major climate and global light regime changes

occurred in that period of the Earth’s geological history.

Introduction
Photolyases are light-dependent DNA repair enzymes. They are activated by blue light and
repair UV induced DNA damage by removing pyrimidine dimers. Three types of PHRs have
been identified: CPD photolyases repair cyclobutane pyrimidine dimers, (6–4) photolyases
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repair (6–4) pyrimidine pyrimidone, and cryptochrome-DASHs exhibit a variety of physiologi-
cal functions including single-strand DNA photolyase activity [1,2], transcriptional regulation
in Synechocystis [3] and light-dependent regulation of metabolism in Fusarium [4].

Photolyases are evolutionary old proteins found in many species from bacteria to verte-
brates [1,5]. Recent studies suggested that DNA repair might have a common evolutionary
origin with circadian rhythmicity [6]. Circadian rhythmicity is a roughly 24-hour cycle of bio-
chemical, physiological, and behavioral processes. It was found in both prokaryotes and
eukaryotes [7]. Circadian rhythms enhance fitness of organisms in both constant and chang-
ing environments [8]. A circadian clock system consists of a central oscillator, input and out-
put pathways [9]. The central oscillator is able to maintain the rhythmic output in the absence
of the external stimuli [10]. Unicellular organisms rely on a single independent circadian
oscillator, whereas organisms with differentiated tissues may have multi-oscillator systems to
coordinate with different rhythms [7]. In animals, the central oscillator resides in the brain,
which controls the circadian behavior of the whole organism and synchronizes peripheral
clocks in other organs [11].

The circadian oscillators of eukaryotes have been extensively studied in fruit fly and mam-
mals [12–14]. One of the key elements of the circadian system in animals and plants is CRY; in
plants it acts as a blue light receptor to entrain circadian rhythms [15].

Cryptochromes are flavoproteins, which are homologous to photolyases but lack the DNA
repair activity [16]. Cryptochromes and photolyases form the photolyase/cryptochrome super-
family [17]. Cryptochromes are ubiquitous in plants and animals [11]. Photolyases and crypto-
chromes have two conserved domains, a DNA photolyase related domain and a FAD binding
domain. In addition, plant and animal cryptochromes possess a C-terminal domain of a vari-
able length, which is absent in the CRY-DASH and photolyase proteins [18] (Fig 1, the con-
served domains were identified by the Conserved Domains Database (CDD) tool [19]). The
variation in the length of the C-terminal domains results in functional diversity within the
cryptochrome family [20]. The C-terminus of the mammalian cryptochrome possesses a
nuclear localization domain required for CRY’s nuclear localization; deletion of the C-terminus
prevents mammalian CRY from negatively regulating the transcription of other circadian com-
ponents. The C-terminal domain of the Arabidopsis CRY is essential for mediating the signal-
ing mechanism by responding to the light [21].

Cryptochromes possess two chromophores: pterin (in the form of 5, 10-methenyltetrahy-
drofolate, MTHF) and flavin (in the form of flavin adenine dinucleotide, FAD); they bind to
the DNA photolyase related region and FAD binding domain respectively as cofactors that
absorb light [22]. Photolyases also have two cofactors, one of them is FAD, and another can be
either 5,10-methenyl-tetrahydrofolate (MTHF) or 8-hydroxy-5-deazaflavin (8-HDF) [22]. The

Fig 1. Domain architecture of the CRY/PHR superfamily. The conserved domains were identified by the
Conserved Domains Database (CDD) tool [19]. The reference sequences are as follows. Animal CRY:Homo
sapiensCRY1 (NP_004066); plant CRY: Arabidopsis thalianaCRY1 (NP_567341); CRY-DASH: Xenopus
laevis (NP_001084438); (6–4) PHR: Danio rerio (NP_571863); CPD PHR: D. rerio CPD class II PHR
(NP_957358). The DNA photolyase related domain and a FAD binding domain are shared by both CRY and
PHR; whereas the C-terminal variable domain is only present in CRY but not in PHY.

doi:10.1371/journal.pone.0135940.g001
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3D-architectures of the photolyase/cryptochrome superfamily members are similar. All of
them fold into 2 domains, an α/β domain and a helical domain. These 2 domains are connected
by a variable loop and the 2 lobes of the helical domain form a groove, which is called FAD-
access cavity. FAD embeds in this “molecular pocket”, and may be resolved at the bottom [23].

Studies on molecular evolution of the CRY/PHR superfamily are somewhat limited. The
pioneering study of Kanai et al. [24] was conducted on the relatively small number of
sequences and thus lacked generalization. Lucas-Lledo and Lynch [5] performed more compre-
hensive phylogenomic analysis of photolyases focused primarily at the gene gain-loss events
and mutation rates. Our study presents the results of the much more comprehensive analysis
of the occurrence, phylogeny, selection, conservation and evolutionary time scale of the photo-
lyase superfamily in eukaryotes.

Materials and Methods

DNA and protein sequences
DNA and protein sequences of CRY and PHR were retrieved from the GenBank; only the
sequences from fully sequenced eukaryotic genomes were used for the analyses. We used
BLASTP and TBLASTN [25] to search the protein database. The following protein sequences
were selected as the queries for respective groups of organisms:Homo sapiens (NP_004066 and
NP_066940) and Aedes aegypti (XP_001648498 and XP_001655778) for animal CRY; Xenopus
laevis (NP_001081421), Drosophila melanogaster (NP_724274),Monosiga brevicollis
(XP_001747506), Arabidopsis thaliana (NP_566520) and Verticillium albo-atrum
(XP_003006428) for (6–4) PHR; Salpingoeca sp. ATCC 50818 (XP_004989008), Arabidopsis
thaliana (NP_568461) and Verticillium albo-atrum (XP_003009023) for CRY-DASH; Xenopus
laevis (NP_001089127), Drosophila melanogaster (NP_523653)Monosiga brevicollis
(XP_001746666) and Arabidopsis thaliana (NP_849651) for CPD class II PHR; Verticillium
albo-atrum (XP_002999933) for fungal CPD class I PHR; Arabidopsis thaliana (NP_567341
and NP_171935) for plant CRY and Arabidopsis thaliana (NP_182281) for plant PHR2. Bit
score of 200 was applied as a lower threshold of sequence selection. Also, we conducted the
BLASTP and TBLASTN search in different taxonomy groups of prokaryotes using the same set
of queries, to clarify the existence of CRY/PHR proteins in bacteria and archaea. One PHR
sequence from each bacteria (Cronobacter sakazakii CPD Class I PHR YP_001438714; Gloeo-
bacter violaceus (6–4) PHR NP_924695; Spirosoma linguale CRY-DASH YP_003390944 and
Geobacter sulfurreducens CPD Class II PHR NP_953872) and archaea (Halorhabdus utahensis
CRY-DASH YP_003131490 and CPD Class I PHR YP_003131773;Methanosarcina barkeri
CPD Class I PHR YP_304088) was included to represent the prokaryotic CRY/PHR groups.
Finally, a total of 762 sequences were selected for the analysis (S1 Table).

RNA polymerase II subunit RPB2 was used for the comparative taxonomical analysis [26].
TheHomo sapiens RPB2 (NP_000929) protein sequence was retrieved using the following
sequence as a probe. DNA-directed RNA polymerase subunit B of 2 archaea (Halorhabdus uta-
hensis andMethanosarcina barkeri) and 4 bacteria (Cronobacter sakazakii, Geobacter sulfurre-
ducens, Gloeobacter violaceus and Spirosoma linguale) were used as outgroups (S2 Table). The
taxonomical analysis involved smaller number of species (206) because RPB2 sequences from
some species were not available in the databases.

Sequence editing and aligning
The protein sequences were aligned by MUSCLE v. 3.8.31 [27]; the nucleotide sequences were
aligned according to the protein alignment using Rev-Trans v.1.4 [28] available at http://www.
cbs.dtu.dk/services/RevTrans/. The aligned sequences were trimmed manually in Bioedit
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v.7.0.9 [29] by removing poorly aligned terminal regions. The final alignment of the CRY/PHR
and RBP2 proteins included 489 and 1172 positions, respectively. The sequences utilized in
this study are listed in online supporting information S1 and S2 Tables. Also, the alignment of
CRY/PHR which is utilized for further analyses was uploaded as supporting information.

Phylogenetic reconstruction
The phylogenetic reconstruction was performed using the protein sequences. The most appro-
priate model of amino acid substitutions for the data set was determined according to the
Akaike information criterion (AIC) and using ProtTest v.3.0 [30,31]. Based on the test, the LG
model with proportion of invariable sites, gamma distribution and equilibrium frequencies
(LG+I+G+F, p-inv = 0.046, α = 0.723) [32] was used for the phylogenetic analysis of the RPB2
proteins. For the CRY/PHR proteins, the best fitting model was WAG+G (α = 1.061). Two
phylogenetic algorithms were utilized to infer the tree. First, the maximum likelihood (ML)
phylogenetic tree was constructed using PhyML v.3.0 [33]. The approximate likelihood-ratio
test (aLRT) [34] was applied to estimate a statistical support for individual nodes. Second, we
used the Bayesian relaxed clock as implemented in BEAST v.2.1.3 [35]. The length of the
MCMC chain was set for 10 million with trees sampled every 1000 steps. The maximum clade
credibility tree was determined using TreeAnnotator v.2.1.2 from the BEAST software package.

Analysis of selection
Gene duplication is an important mechanism for generating novel functional proteins, because
the redundant homologs are free to accumulate substitutions. However, whether the new func-
tion of a gene evolves under positive selection remains controversial [36]. We analyzed positive
selection using the ML approach as implemented in HyPhy software package v.2.1.2 [37]. The
ratio of nonsynonymous to synonymous substitutions (dN/dS or ω) was used to measure the
strength of selection on the CRY/PHR genes. The set of tests was conducted: (1) the basic model
(M0), which estimates uniform ω ratio among all sites, was used to calculate a representative
estimate for the whole dataset [38]; (2) the site models including M1 (nearly neutral), M2 (selec-
tion), M3 (discrete), M7 (beta distribution, ω> 1 disallowed) and M8 (beta distribution, ω> 1
allowed) [39–41]. The likelihood-ratio test (LRT) was performed between the following pairs of
the models: (1) M3 vs. M0; (2) comparisons of site models including M2 vs. M1 andM7 vs. M8.
Then χ2 tests were performed with degrees of freedom (df) between two compared models.

Also, we utilized the recently developed method, branch-site random effects likelihood
(REL) [42] implemented in HyPhy v.2.1.2 [37], to detect episodic diversifying selection. This
LRT-based approach identified all lineages in the phylogeny with a proportion of positive
selected sites, without making priori assumptions (“foreground” and “background” branches)
that may lead to high rates of false positive or negative selection [42]. The branch-site REL
method has been successfully applied to infer positive selection in several research publica-
tions [43–45].

Identification of conserved residues
Evolutionarily conserved residues and motifs are hypothesized to be functionally important
[46]. We utilized ConSurf (http://consurf.tau.ac.il/) to identify probable functionally important
residues in the CRY/PHR proteins [47]. The analysis was conducted using the Bayesian algo-
rithm and the LG model with the parameters as specified above. The same sequence alignment
used in DIVERGE v.2.0 was uploaded to the server. Degrees of conservation in the protein sub-
families visualized with Chimera v.1.6.2 [48].
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Estimating evolutionary time of gene duplications and gain-loss events
The inferred RPB2 tree was tested for the presence of molecular clock using HyPhy v.2.1.2 [37].
Based on the test results, the model with local clock was utilized for the further analysis. Six
internal calibration points (CP1-CP6) were used for time estimates. CP1-CP4 indicate the ori-
gins of main groups of animals with minimum and maximum time estimates constrained by
respective biostratigraphic evidence [49]: CP1 corresponds to the origin of eutherians (113–95.3
Mya); CP2 is the divergence of birds and crocodile (250.4–235 Mya); CP3 is the split of the ray-
finned fishes and tetrapods (421.75–416.1 Mya) and CP4 corresponded to the divergence of flies
and mosquitos (295.4–238.5 Mya). CP5 was inferred from the phylogenetic study of three genes
(rbcL, atpB, 18S rDNA) in 560 angiosperms, which estimated the origin time of Angiospermae
between 179 and 158 Mya [50]. CP6 is the origin of Ascomycota about 500–650 Mya [51].

The computations were conducted using the ML approach as implemented in PAML v. 4.4
[52]. The substitution model for the data was determined by jModelTest v.0.1.1 [53]. The GTR
+I+G (p-inv = 0.031 and α = 0.455) model turned to fit our data best [54]. We also used the
Bayesian relaxed clock as implemented in BEAST v.1.6.2 to estimate the dates of various events
in evolution of the superfamily [35].

Results

Occurrence and phylogeny of the CRY/PHR superfamily in eukaryotes
Members of the CRY/PHR superfamily were found in genomes of species across all kingdoms;
however, their occurrence greatly varied among taxa (Table 1). The most ubiquitous groups in
eukaryotes are CPD class II photolyases, (6–4) photolyases, and CRY-DASH, which are present
in the majority of the studied taxa. The other types of photolyases are more taxon-specific.
CPD class I photolyases occur only in prokaryotes, fungi and basal eukaryotes (Ciliophora and
Euglenozoa). Among fungi, Ascomycetes and Basidiomycetes possess only CPD class I but no
CPD class II PHR, while unicellular Nosema ceranae has only CPD class II PHR. The CPD
class II photolyases are ubiquitous in archaea and eukaryotes but rare in bacteria (found only
in Methanomicrobia and Methanobacteria) and lost in placental mammals. Three subfamilies
are specific either to plants or animals: plant cryptochromes, plant PHR2 (photolyase/blue-
light receptor 2), and animal cryptochromes (Table 1).

Both the ML and Bayesian trees feature 6 main clades with significant statistical support,
which correspond to animal CRY and (6–4) photolyases, CRY-DASH, plant PHR2, plant CRY
and 2 classes of CPD photolyases (CPD class I and class II) (Fig 2).

Selection in the genes of the CRY/PHR superfamily
We utilized 6 models implemented in PAML to estimate the selective forces after several dupli-
cations having occurred in the CRY/PHR superfamily (Table 2). According to the results, the
global ω estimated by M0 were low (0.0168), indicating that cryptochromes and photolyases
have experienced strong purifying selection. Site model M2a is significantly better than M1a
(2ΔlnL = 3996989.1508, df = 2, p< 0.01), and M8 manifests a higher likelihood as compared to
M7 (2ΔlnL = 1998514.0002, df = 2, p< 0.01). Therefore, the alternative hypotheses (selection)
cannot be rejected. However, no positively selected sites were identified by the site models.

The branch-site REL method [42] determined about 35.67% (270/757) of the branches to
evolve under episodic diversifying selection (S3 Table and S1 Fig). Some of them had sites with
very large ω+ (>> 1.0) but the proportion of the sites under positive selection was generally
less than 10% in most branches ranging between 0.021–0.082 (e.g., Node99, ω+ = 5230.128,
weight p+ = 0.043). On the other hand, some lineages, e.g., plant CRY in higher plants (Node9),
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Table 1. Occurrence of the CRY/PHR genes in main taxa.

Taxa Class I CPD Phr Class II CPD Phr (6–4) Phr Cry-DASH Plant Cry Plant PHR2 Animal Cry

Prokaryotes

Archaea + +a +b

Bacteria + + +c +

Alveolata

Ciliophora +

Perkinsea +

Apicomplexa +

Stramenopiles

Bacillariophyta + + +

Oomycetes + +

Eustigmatophyceae + +

Other basal eukaryotes

Euglenozoa +

Amoebozoa +

Heterolobosea +

Rhodophyta +

Cryptophyta +

Choanoflagellates + + +

Fungi

Microsporidia +d

Ascomycetes + + +

Basidiomycetes + + +

Viridiplantae

Chlorophyta + + + + +

Bryophyta + + + + +

Lycopodiophyta + + + + +

Amborellales + + + + +

Liliopsida + + + + +

Eudicotidae + + + + +

Animalia

Nematoda +

Cnidaria + + + +

Mollusca + + + +

Crustacea + + + +

Insecta + + +

Echinodermata + + + +

Cephalochordata e +

Chondrichthyes e +

Actinopterygii + + + +

Sarcopterygii e +

Amphibia + + + +

Testudines + + + +

Lepidosauria + + + +

Archosauria + + +

Aves + + + +

Metatheria + +

Monotremata +

Eutheria +

a: Found only in Methanomicrobia and Methanobacteria
b: Found only in Halobacteria
c: Found only in Gloeobacter violaceus
d: Found only in Nosema ceranae
e: Absent of CRY/PHR homologs may be due to insufficient annotation

doi:10.1371/journal.pone.0135940.t001
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indicated quite a large proportion of branch length (weight p+ = 0.163) with positive selection
(S3 Table and S1 Fig).

Identification of conserved amino acid residues
In the CRY/PHR superfamily, clusters of conserved sites were located in DNA photolyase
related domain (positions 3–159 of the alignment) and FAD binding domain (position 201–
477) (Fig 3). The FAD binding domains of plant PHR2 proteins are shorter (~ 95 aa) and share
fewer conserved residues than in the other subfamilies. In addition, we identified two highly
conserved residues (with conservation scores� 8) shared by all 7 subfamilies: the Arg locates
at position 12 of the alignment and the Ser at position 241 (Fig 3).

Time estimates of the events in CRY/PHR superfamily evolution
Time estimates of the key events in evolution of the CRY/PHR superfamily are given in Table 3
and Fig 4. Generally, the ML analysis yielded the smaller values as compared to the Bayesian

Fig 2. Unrootedmaximum-likelihood tree of the CRY/PHR homologs.Maximum-likelihood probabilities
and Bayesian posteriors of the node support below 0.5 are not shown. The values are the likelihoods and
posteriors respectively. The CRY/PHR superfamily include 6 main subfamilies: animal CRY and (6–4)
photolyases, CRY-DASH, plant PHR2, plant CRY and 2 classes of CPD photolyases (CPD class I and class II).

doi:10.1371/journal.pone.0135940.g002
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analysis. On the other hand, the ML estimates fall within the 95% HPD range of the Bayesian
estimates. The aggregated results from both analyses suggest that several major gene duplica-
tion and losses in the superfamily occurred between 700 and 400 Mya (Table 3), which corre-
spond to four geological periods: Devonian, Silurian, Ordovician, and Cambrian. The origin of
animal CRY is dated back to the Neoproterozoic Era (~1000–541 Mya). The plant CRY is evo-
lutionary younger and evolved in Paleozoic Era (~541–252) (Table 3).

Discussion

Origin and evolutionarily ancient diversification of photolyases
The phylogenetic tree of the CRY/PHR proteins inferred in the present study was similar to
those from the previous studies [5,11]. The protein subfamilies form several main clades,
including animal CRY & (6–4) photolyases, CRY-DASH, plant CRY and 2 classes of CPD
photolyases (CPD class I and class II). Also, we identified a new group of photolyases, PHR2,
which is specific to plants. The PHR2 homologs formed a clade phylogenetically related to
CRY-DASH.

The pioneering phylogenetic study of cryptochrome/photolyase superfamily [23] involved
limited number of sequences. In that study, the CPD class I PHR photolyases were classified
into two types according to their cofactors, MTHF and 8-HDF [23]. The split of these two
types was thought to occur in the early stage of the evolution of the CRY/PHR superfamily
(before the divergence of prokaryotic and eukaryotic organisms) [23].

Table 2. Results of the codon based positive selection tests by HyPhy.

Model Parameters

Model 0 (one ratio) lnL = -507700.8700

ω = 0.0168

Model 1 (Neutral) lnL = -397024795.0599

ω = 0.0168 ± 0.0000

P0 = 1.0000, ω0 = 0.0168

Model 2 (Selection) lnL = -395026300.4845

ω = 0.0184 ± 0.0000

P1 = 1.0000, ω1 = 0.0184

P2 = 0.6005, ω2 = 4.0276

LRT a (M1/M2, df = 2) 2ΔlnL = 3996989.1508 **

Model 3 (Discrete) lnL = -398024989.2332ω = 0.1823 ± 0.0252

P1 = 0.7792, R1 = 0.2038, ω1 = 0.4802, P2 = 1.0000, R2 = 1.4261

LRT (M0/M3, df = 4) 2ΔlnL < 0

Model 7 (Beta) lnL = -398023356.0916

ω = 0.0338 ± 0.0012

βP = 0.6156, βQ = 17.5868

Model 8 (Beta & ω) lnL = -397024099.0915

ω = 0.0650 ± 0.0034

βP = 0.8055, βQ = 11.5904, ω1 = 1, P = 1.0000

LRT (M7/M8, df = 2) 2ΔlnL = 1998514.0002 **

a: Likelihood ratio test was estimated by 2ΔlnL and followed by a χ2 test

*: p < 0.05

**: p < 0.01).

LRT = -2(lnL0-lnLA)

doi:10.1371/journal.pone.0135940.t002
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The occurrence of CRY/PHR proteins are taxon-specific (Table 1). The distribution of the
CRY/PHR proteins in protists reflects paraphyly and evolutionary diversification of this group
of eukaryotes. The evolutionary oldest protists, Trypanosoma brucei, Tetrahymena thermophile
and Leishmania major have only CPD class I. The evolutionary younger protists lack CPD
class I and may possess members of the other three types of photolyases (CPD class II, (6–4)
PHR and CRY-DASH).

Another interesting fact is that mammals possess no CPD class II photolyases, except for
marsupials (Monodelphis domestica and Sarcophilus harrisii). Recent research demonstrated
that the CPD photolyase in a marsupial Potorous tridactylus was able to act as a cryptochrome,

Fig 3. Group conserved residues identified by ConSurf. Degrees of conservation in the protein subfamilies visualized with Chimera v.1.6.2 [48]. The
numbers of upper row and black bars indicate the level of conservation (0–9), 0 being the lowest.

doi:10.1371/journal.pone.0135940.g003
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suggesting that ancestral CRY/PHR proteins were likely manifested both DNA repair and cir-
cadian clock function [55].

The PHR2 (photolyase/blue receptor 2) subfamily previously reported from green algae
Chlamydomonas reinhardtii [56] is common in higher plants (S1 and S2 Figs). However, they
are absent from all other algae (S1 Table). The PHR2 protein from Chlamydomonasmanifests
CPD photolyase repairing activity for both chloroplast and nuclear DNA [56]. However, PHR2
in Arabidopsis thaliana shows no chloroplast DNA repair activity [57]. At the same time, the
CPD class II PHR of higher plants exhibits the CPD repair function in DNA of all cellular
genomes (nuclear, chloroplasts and mitochondrial) [58]. The property of photolyases to target
different organelles is thought to be associated with some functional motif, but the exact mech-
anism of organelle-targeting is yet to be determined [58]. Among eukaryotes, plants have the
largest set of various types of photolyases (Table 1). Some of them have similar functions, as in
the above example. Such functional redundancy may be an evolutionary adaptation to the rela-
tively high, as compared to the other eukaryotes, exposure to sunlight and, respectively, harm-
ful UV radiation. This higher exposure prompts for more efficient DNA repairing mechanism.

Although the physiological function of PHR2 is similar to that of the CPD class I and CPD
class II proteins, their sequence homology is weak. Our results suggest that PHR2 likely evolved
from an ancient CRY-DASH gene (Fig 2). This split was followed by significant functional diver-
gence: CRY-DASH encodes a single-strand DNA (ssDNA) CPD photolyase, whereas plant
PHR2 repairs CPD dimers of double-strand DNA (dsDNA) [1]. The ssDNA binding property of
CRY-DASH is closely related to its structure, the CPD-binding cavity of the Arabidopsis CRY--
DASH is unable to stably bind CPD from the dsDNA since the binding is less energetic [59].

Based on their roles in the circadian clock, two groups of functionally different animal CRY
proteins were identified [60]. A Drosophila-like type 1 CRY is a UV-A/blue light receptor in
the circadian oscillator, while a vertebrate-like type 2 CRY is thought to be a negative regulator
of the clock’s transcriptional feedback loop [61]. Whether the type 2 cryptochromes also have
photoreceptor function is still debated [11]. There are several transcription factors involved in
animal circadian feedback loop, including Period (PER), Timeless (TIM), brain and muscle
Arnt-like protein-1 (BMAL1), CYC (Cycle) and circadian locomotor output cycles kaput
(CLOCK or CLK) [62–66]. The molecular mechanisms of the fly and mammalian circadian
clocks are different. The fly CRY binds to TIM that results in degradation of the latter and

Table 3. Maximum-likelihood and Bayesian time estimates for the nodes (Mya) (Fig 4).

Node Maximum Likelihood Bayesian b Evolutionary Events

1 812.23 ± 142.23 961.33 (755.41–1359.82) Loss of CPD class I Phr in plants and animals

2 528.21 ± 168.73 422.30 (285.08–679.26) Origin of plant Cry

3 606.62 ± 122.43 698.45 (500.62–769.12) Origin of animal Cry

4 -a 320.27 (269.12–408.18) Loss of Cry-DASH in insects

5 544.06 ± 120.83 598.85 (482.22–638.85) Origin of Cry4

CP1 113–95.3 Loss of photolyases, Cry-DASH and Cry4 in placental mammals [47]

CP2 86.5–66 Loss of Cry-DASH and (6–4) Phr in birds [47]

CP3 421.75–416.1 Duplication of vertebrate Cry [47]

CP4 295.4–238.5 Loss of insect Cry2 in fly [47]

CP5 179–158 Duplication of plant Cry [48,87]

CP6 500–650 Origin of Angiospermae [49]

a: Cannot be calculated due to the lack of the DNA sequence of the Daphnia pulex RPB2 (EFX81055)
b: Posterior mean (95% HPD)

doi:10.1371/journal.pone.0135940.t003
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Fig 4. Maximum-likelihood tree with local clock of the RPB2 homologs.Maximum-likelihood
probabilities and Bayesian posteriors of the node support below 0.5 are not shown. The values are the
likelihoods and posteriors respectively. The internal calibration points (CP1-CP6): CP1 corresponds to the
origin of eutherians (113–95.3 Mya); CP2 is the divergence of birds and crocodile (250.4–235 Mya); CP3 is
the split of the ray-finned fishes and tetrapods (421.75–416.1 Mya) and CP4 corresponded to the divergence
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subsequent inhibition of the activity of a PER/TIM dimer. Without CRY, the PER/TIM dimer
is able to enter nucleus and repress the transcription of other clock genes. In mammals, three
period (PER 1, 2 and 3) and two cryptochrome (CRY 1 and 2) proteins form a cytoplasmic het-
erodimer, which enters the nucleus and then inhibits transcription of CLK and BMAL1 [67].
In plants, circadian clocks are entrained by red light receptor phytochromes (PHY) as well as
blue light receptor cryptochromes, but the signal transduction pathways were not comprehen-
sively studied [68].

The obtained phylogenetic tree (S1 and S2 Figs) indicates that there are two insect Cry para-
logs, Cry1 and Cry2. Unlike the evolutionary older CRY1, CRY2 is not photosensitive and has a
transcriptional repressive function similarly to vertebrate CRY [69]. Among the studied insect
species, only few possess both paralogs, the others lack either one. Interestingly, the majority of
insects lost photosensitive CRY1 and has only CRY2. It is still unknown how insects lacking
CRY1 sense light. It may be possible that those species have developed some compensating
mechanism for photosensitivity.

The duplication of the insect CRY ancestor probably occurred well before the origin of
insects, maybe even prior to the split of deuterostomes and protostomes, because homologous
cryptochromes were found in Nematostella vectensis (Nemato1, Nemato1b, Nemato1c and
Nemato1d), Strongylocentrotus purpuratus (Strongy1 and Strongy2) and Daphnia pulex
(DaphniaM and DaphniaD, S1 Fig). The duplications of cytochromes also occurred in verte-
brates and plants, but there is no evidence in the available literature that the paralogs of mam-
malian and plant CRYs have experienced functional divergence.

The genome of zebra fish Danio rerio possesses the largest known number of the crypto-
chrome genes, 8. Four of them (NP_001070765, NP_571865, NP_571866 and NP_571867;
annotated as Cry1a, 1b, 2a and 2b, respectively) are very similar and appear in the same clade
with vertebrate Cry1; one (BAA96850) annotated as Cry3 falls in the clade with vertebrate
Cry2, one (NP_571862) is Cry4, one (NP_991249) is Cry-DASH and one (XP_009291670) is
plant-like Cry [70]. Recently, a plant-like Cry was identified in D. rerio (XP_009291670), which
may act as a circadian photoreceptor [70]. The maximum number of cryptochrome gene copies
in other animal taxa (including birds, reptiles and amphibians) is usually 2 or 3. The extra Cry
homologs in zebra fish were likely generated by ancient polyploidy events [71]. In the evolution
history of vertebrates, their genomes were duplicated twice (occurred in the early evolution of
deuterostomes), and a third genome duplication, which is named the fish-specific genome
duplication (FSGD), occurred in the basal group of ray-finned fishes (Actinopterygii) (~ 350
Mya) [72]. The Cry4 genes are apparently evolutionarily oldest among animal cryptochromes.
A primitive Cephalochordate Branchiostoma floridae possesses homologs of Cry4
(XP_002609503 and XP_002595074), thus suggesting that Cry4might emerge in Chordata,
and then be lost in mammals. However, CRY4 was reported to exhibit neither (6–4) PHR nor
circadian functions [73,74].

Cryptochromes of Drosophila (insect CRY1) and plants exhibit similar physiological func-
tions, both of them play roles in light sensing and entrainment of circadian oscillator, but are
not essential for the self-regulation of the clock [75,76]. However, the evolutionary history of
plant and animal cryptochromes is quite different: they evolved from the different ancestral
photolyase genes soon after the plant—animal divergence [77]. Animal cryptochromes origi-
nated from (6–4) photolyases, while plant cryptochromes are evolved from CPD photolyases

of flies and mosquitos (295.4–238.5 Mya). CP5 estimated the origin time of Angiospermae (179–158 Mya)
[48,87]. CP6 is the origin of Ascomycota about 500–650 Mya [49]. In addition, time of five evolutionary events
were estimated (Node11-5). Time estimates was showed in Table 3.

doi:10.1371/journal.pone.0135940.g004
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(Fig 2). Given that cryptochromes (except for CRY-DASH) are absent in fungi and prokary-
otes, this may suggest that the plant and animal cryptochromes might appear soon after the
origin of these taxa [77]. The origin of animal Cry was accompanied by coevolution of other
circadian components including PER, BMAL1, CYC and CLK [77].

Photolyases, including CPD PHR, (6–4) PHR and single-strand photolyase CRY-DASH,
were lost in higher animals, including placental mammals (Fig 2). The loss of PHR genes in
higher animals was thought to occur due to weak natural selection [5]. In the absence of photo-
lyases, placental mammals rely on more complex and less efficient nucleotide excision system
consisting of DNA glycosylases, nucleases and DNA polymerases to eliminate pyrimidine
dimers [5,78]. It was hypothesized that the loss of photolyases in higher eukaryotes was associ-
ated with the reduced UV stress [5]. Strong UV radiation was diminished by accumulation of
oxygen since Proterozoic (~ 2500–540 Mya) [79].

Although eukaryotes and some prokaryotes (cyanobacteria) display circadian rhythms, the
input signals to the clock are not always controlled by cryptochromes. In plants, circadian
rhythms are activated through the red light receptor phytochrome (PHY) and blue light recep-
tor cryptochrome [80]. The generic feedback loop of circadian rhythm in fungi is different:
blue light is absorbed by the flavoprotein white collar-1 (WC-1) [81]. Cyanobacteria are the
simplest organisms to exhibit circadian rhythmicity [82]; an environmental signal is trans-
duced to the endogenous clock by the circadian input kinase A (CikA) [83], and the whole cir-
cadian system is controlled by the kaiABC gene cluster [84]. There had been no evidence for
common ancestor of eukaryotic and prokaryotic circadian genes [85], until it was found that
the cryptochromes have a common ancestor with the prokaryotic photolyase [17]. However, it
is still unclear what circadian function is performed by CRY-DASH in prokaryotes. Another
open question is how the distinctive circadian mechanisms emerged in different groups of
eukaryotes. This prompts for further extensive studies of circadian genes in prokaryotes and
eukaryotes to solve the above problems.

Episodic positive selection and conservation of photolyase and
cryptochrome
The results of the selection analysis are in an agreement with the previously reported data, indi-
cating that CRY/PHR genes have evolved primarily under strong purifying selection (Table 2)
[5,86]. On the other hand, positive selection likely occurred during some periods of crypto-
chromes’ evolution: the members of the superfamily experienced multiple duplications and
neofunctionalizations, which are usually accompanied by strong episodic positive selection
[87]. The site-specific models are conservative in estimating positive selection, especially for
protein superfamilies with long evolutionary histories [88]. Therefore, we utilized the branch-
site model to detect episodic diversifying selection.

Based on the results of REL analysis, episodic diversifying selection was apparently quite
common in the evolution of the PHR/CRY superfamily (S3 Table and S1 Fig). In most cases,
episodic diversifying selection operated on speciation events, e.g., plant CRYs of Angiospermae.
Angiosperms are an evolutionary young (~179–158 Mya) and species-rich group, which experi-
enced fast diversification and dominated almost all environments on Earth [89]. The speciation
processes were likely followed by episodic diversifying selection in circadian genes, which might
help these species to adapt to various ecological niches. Similar scenario was reported for molec-
ular evolution of other eukaryotic circadian genes, particularly plant phytochromes (PHY) [90].
This might imply coevolution of cryptochromes and phytochromes. Indeed, phytochromes
directly or indirectly interact with CRY and perform similar circadian functions (red/far-red
light receptors), thus PHY and CRYmight evolve under similar selection pressure [91]. On the
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other hand, strong positive selection played a role in functional divergence of PHR/CRY pro-
teins, e.g., Node 320 (divergence of CRY-DASH and plant PHR2) (S1 Fig).

The overall sequence similarity between the two homologous domains, DNA photolyase
related domain (positions 3–159 of the alignment) and FAD binding domain (position 201–
477), is generally high (Fig 3). The observed high conservation of PHR/CRY sequences corre-
sponds to the fact that PHR and CRY proteins maintain a conserved 3D structure [11]. On the
other hand, only two conserved residues shared by all subfamilies (Fig 3). One of them, Arg, is
located at position 12 of the alignment, which was reported within the binding site of Cl- in
Arabidopsis CRY-DASH (R51 of PDB: 2VTB) [92]. As to S241, no functional or structural
importance of this residue was reported previously. S241 is adjacent to α helices; we hypothe-
size that this residue is essential for maintaining the secondary structure of α helix and, respec-
tively, for FAD binding (e.g., S260 and α14 of Arabidopsis CRY1, PDB: 1U3D [93]). In
addition, the FAD binding domains of plant PHR2 are shorter and less conserved as compare
to the other subfamilies. It is yet to be studied how plant PHR2 maintains its function with
such an "incomplete" domain.

The key events in CRY/PHR evolution and major changes in the global
light regime
The phylogenetic analysis along with the biostratigraphy made it possible to estimate the
approximate time of key events in evolution of the CRY/PHR superfamily. According to the
time estimates based on the ML and Bayesian approaches, plant, insect and vertebrate crypto-
chromes originated in Neoproterozoic Era (~1000–541 Mya). Studies of fossil record and geo-
logical patterns suggest that, during that period, the day length steadily increased from 18 h at
900 Mya [94] to 21 h at 600 Mya [95] and to approximately 22 hours at 650–600 Mya [96]. An
ancestor of the vertebrate Cry1 and Cry2 duplicated in Silurian-Devonian Period (~443.4–
358.9 Mya) (Table 3 and Fig 4). At that time, the climate of Earth became stable and warm, the
concentration of oxygen increased and the level of the harmful UV radiation lowered [97].
New groups of living organisms evolved and spread in this era, such as lobe-finned fish and
amphibians [98]. As one of the main adaptation mechanisms, the endogenous circadian system
increases Darwinian fitness through synchronizing the metabolic and other biological rhythms
of an organism with environmental light/dark cycle [99]. Therefore, the circadian system in
eukaryotes might have experienced certain evolutionary changes to adjust to the increase of
day length. These changes might include, among the others, functionally important substitu-
tions in the existing circadian genes, the origin of clock genes de novo or co-option of non-cir-
cadian genes to perform circadian function. In these terms, the general direction of the
circadian system evolution in eukaryotes is similar to that in prokaryotes (cyanobacteria)
[100]. Furthermore, the time estimates for the major events in evolution of cryptochromes and
the cyanobacterial circadian system [101] correspond to each other and to the major environ-
mental changes in the global light regime. For example, the origin of animal cryptochromes
(elements of the circadian input pathway) occurred about the same time (~700–600 Mya)
when the bona fide circadian system of some cyanobacteria lost kaiA, also an important ele-
ment of the circadian input [101], In turn, this period corresponds to the suggested upper time
limit of the last of the three periods proposed to describe the role of UV radiation in the evolu-
tion of cyanobacteria [102].

Circadian rhythmicity and photo-activated DNA repair were suggested to have a common
evolutionary origin [103]. Escape from sunlight represented a major selective force for develop-
ment of circadian rhythms [104]. Geological studies indicated that in Precambrian times
(~3800–544 Mya) atmosphere contained little oxygen and primitive organisms were exposed
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to high ultraviolet radiation during the daytime [105]. There are 2 main strategies for organ-
isms to avoid the harmful effects of UV radiation [6]. The first one is repairing the UV-induced
DNA damage which is the physiological function of photolyase. The other one is to avoid
being irradiated, such as migrate to deeper water. These movements were observed by the diel
vertical migrations of zooplankton, which initiated and controlled by light [106]. Such migra-
tions also occur in other marine and freshwater organisms such as water flea Daphnia magna
[107], and sensitivity was related closely to the UV photoreceptors in its compound eye [107].
These diel vertical migrations may help to understand the coevolution of photoreception and
circadian rhythms, and the coevolution of their respective controlling genes [6].
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